Iterated polynomials are dense

Pascal Autissier Jean-Philippe Furter Egor Yasinsky

Abstract

For any infinite field \mathbf{k} and any positive integer r, we show constructively that the map sending each polynomial $P \in \mathbf{k}[x]$ to its r-th iterate $P^{\circ r}$ is dominant in various inductive limit topologies on the space of all polynomials.

Contents

1	Equations in groups		1
	1.1	The word map	1
	1.2	Borel's dominance theorem and weakly exponential Lie groups	2
	1.3	Endomorphisms of the affine space and some ind-topologies	3
	1.4	Main result	4
	1.5	Finitary case	5
2	Pow	Power maps on $\operatorname{End}(\mathbb{A}^1_k)$	
	2.1	Hasse derivative	6
	2.2	The key proposition	7
	2.3	Proof of the main result	12

1 Equations in groups

1.1 The word map

In what follows, by a *word* we mean an element $w = w(x_1, ..., x_N)$ of the free group \mathcal{F}_N on N generators $x_1, ..., x_N$, for some $N \ge 1$. Let G be a group. The *word map* on G defined by w is the map

$$\textbf{w} \colon G^N \to G, \ (g_1, \ldots, g_N) \mapsto w(g_1, \ldots, g_N).$$

Assuming that $\mathbf{w} \neq \mathrm{id}$, what can be said about the image of \mathbf{w} ? Or, in other words, what can be said about the solutions $(g_1, \ldots, g_N) \in G^N$ of the equation

$$w(g_1, \dots, g_N) = g \tag{*}$$

when one varies $g \in G$? This problem has a long and remarkable history, and we refer to [Sha13, BGK14, GKP18] for some excellent surveys. Clearly, one cannot expect the map \mathbf{w} to be surjective already for power words x^r , $r \ge 2$. For example, taking $G = \operatorname{SL}_2(\mathbf{k})$, where $\mathbf{k} = \mathbb{R}$ or $\mathbf{k} = \mathbb{C}$, we easily find matrices which do not admit square roots in G, and thus $w = x^2$ induces a non-surjective word map.

1.2 Borel's dominance theorem and weakly exponential Lie groups

Still, one can ask: how "large" is the image $\mathbf{w}(G^N)$ of a word map? For instance, if the group G is endowed with a reasonable topology, is the image of \mathbf{w} dense in G? Here are two prototypical results in this direction which inspire our main theorem, presented in Section 1.4 below.

A morphism $f: X \to Y$ of topological spaces is called *dominant* if its image f(X) is dense in Y. When X and Y are algebraic varieties, equipped with the Zariski topology, Chevalley's theorem implies that a morphism $f: X \to Y$ is dominant if and only if f(X) contains a non-empty Zariski open subset. The following remarkable theorem is due to A. Borel.

Theorem 1.1 ([Bor83]). If **k** is a field, G is a connected semisimple linear algebraic **k**-group, and $w \neq id$, then the corresponding word map **w**: $G^N \rightarrow G$ is dominant.

The second result concerns complex Lie groups and power maps $\mathbf{w} \colon g \mapsto g^r$ defined on them. Standard tools from Lie theory, such as the exponential map $\exp \colon \mathfrak{g} \to G$, provide an easy way to extracting r-th roots. Specifically, given an element $g \in G$, assume there exists $v \in \mathfrak{g}$ such that $g = \exp(v)$. Then $\exp(v/r)$ is an r-th root of g. Unfortunately, the exponential map of a Lie group is not necessarily surjective — this issue has been the subject of extensive study (see the references in the surveys mentioned above). However, for complex Lie groups the following can be said¹.

Theorem 1.2 ([HM78, Theorem 2.11]). Every complex connected Lie group G is weakly exponential, i.e. the image of the exponential map $\exp: \mathfrak{g} \to G$ is dense.

Hence, for $w = x^{T}$ and "typical" g, the equation (*) admits a solution.

¹In the semisimple case, this theorem is also due to A. Borel.

1.3 Endomorphisms of the affine space and some ind-topologies

This note was motivated by a question posed in the surveys [GKP18, BGK14], which deal with word equations in simple matrix groups. Let $\mathbf k$ be any field. Noting J.-P. Serre's observation [Ser10] that the group $\mathrm{Bir}(\mathbb P^2_{\mathbf k})$ of birational transformations of the projective plane resembles simple linear algebraic groups, the authors of these surveys asked whether word maps are dominant for the Cremona group $G = \mathrm{Bir}(\mathbb P^2_{\mathbf k})$ and any known "interesting" topology on it, see [BGK14, Problem 7.11] and [GKP18, Question 3.11].

We consider the closely related automorphism group of the affine space $\operatorname{Aut}(\mathbb{A}^n_k)$ and, more generally, the monoid $\operatorname{End}(\mathbb{A}^n_k)$ of algebraic endomorphisms. Recall that an endomorphism of \mathbb{A}^n_k is given by

$$f: x = (x_1, ..., x_n) \mapsto (f_1(x), ..., f_n(x)),$$

where $f_1, \ldots, f_n \in \mathbf{k}[x_1, \ldots, x_n]$ are polynomials. To simplify the notation, we often write (f_1, \ldots, f_n) in what follows. The *degree* deg f of an endomorphism $f = (f_1, \ldots, f_n)$ is defined as $deg(f) = max\{deg(f_1), \ldots, deg(f_n)\}$. The subset of invertible elements of the monoid $\mathcal{E} = End(\mathbb{A}^n_k)$ is the group $Aut(\mathbb{A}^n_k)$ of automorphisms of \mathbb{A}^n_k .

For each $d \ge 0$, we identify the set

$$\mathcal{E}_{\leqslant d} = \left\{ f \in End(\mathbb{A}^n_k) \colon \deg f \leqslant d \right\}$$

with the vector space \mathbf{k}^N , where $N = \binom{d+n}{n}n$, in an obvious way. Following I. R. Šafarevich [Sha66], we view $\text{End}(\mathbb{A}^n_{\mathbf{k}})$ as an *ind-monoid*.

Definition 1.3. Consider the filtration

$$\mathcal{E}_{\leqslant 1} \subseteq \mathcal{E}_{\leqslant 2} \subseteq \ldots \subseteq \mathcal{E}_{\leqslant d} \subseteq \mathcal{E}_{\leqslant d+1} \subseteq \ldots, \quad \mathcal{E} = \bigcup_{d=1}^{\infty} \mathcal{E}_{\leqslant d}. \tag{1}$$

- 1. A set $S \subseteq \mathcal{E}$ is called *Zariski closed* if $S \cap \mathcal{E}_{\leq d}$ is Zariski closed in $\mathcal{E}_{\leq d}$ for all $d \geqslant 1$. The corresponding topology on End(\mathbb{A}^n_k) is called the *Zariski ind-topology*.
- 2. Let $(\mathbf{k},|\cdot|)$ be a valued field with a non-trivial absolute value $|\cdot|$. The map $(x,y)\mapsto |x-y|$ is a metric on \mathbf{k} which yields a topology on \mathbf{k} in the usual way. The sets $\mathcal{E}_{\leqslant d}$, being identified with a \mathbf{k} -vector space \mathbf{k}^N , where $N = \binom{d+n}{n}n$, can be endowed with a uniform norm $||x_1e_1+\ldots x_Ne_N||_{\infty} = \max_{1\leqslant i\leqslant N}|x_i|$ for a given choice of basis $\langle e_1,\ldots,e_N\rangle = \mathcal{E}_{\leqslant d}$. Furthermore, any two such uniform norms with respect to two different bases are equivalent, and hence they define the same topology on $\mathcal{E}_{\leqslant d}$. If $(\mathbf{k},|\cdot|)$ is complete, then all norms on $\mathcal{E}_{\leqslant d}$ are equivalent to the uniform norm and

therefore define the same topology. In any case, by an abuse of terminology, we call this topology *Euclidean*. A set $S \subseteq \mathcal{E}$ is called *Euclidean closed* if $S \cap \mathcal{E}_{\leqslant d}$ is closed in this topology on $\mathcal{E}_{\leqslant d}$ for all $d \geqslant 1$. The corresponding topology on $\operatorname{End}(\mathbb{A}^n_k)$ is called the *Euclidean ind-topology*. Note that this topology is still Hausdorff.

1.4 Main result

The main result of this note is the following.

Theorem. Let \mathbf{k} be a field, $r \ge 1$ be an integer and $w = x^r$ be a power word. Consider the corresponding power map on $\operatorname{End}(\mathbb{A}^1_{\mathbf{k}}) \simeq \mathbf{k}[x]$, which sends every polynomial to its r-th iterate:

$$\mathbf{w} \colon \mathbf{k}[x] \to \mathbf{k}[x], \ P \mapsto P^{\circ r}.$$

Then the following holds.

- 1. If $(\mathbf{k}, |\cdot|)$ is a valued field with a non-trivial absolute value, then \mathbf{w} is dominant in the Euclidean ind-topology.
- 2. The map \mathbf{w} is dominant in the Zariski ind-topology for any infinite field \mathbf{k} .

Furthermore, the statement stays true when w is replaced with any non-trivial word $w \in M_N$ in the free monoid M_N on N generators.

Note that, unlike the case of dominant morphisms between algebraic varieties, the image of a dominant map in the ind-topology *does not*, in general, contain a Zariski-open subset.

Remark 1.4.

- Whenever it is defined, the Euclidean ind-topology on $\operatorname{End}(\mathbb{A}^n_k)$ is finer than the Zariski ind-topology and therefore, for k valued, statement (1) is stronger than statement (2).
- The "Furthermore" part of the theorem follows from its main part. Indeed, if $w = x_{i_1}^{m_1} x_{i_2}^{m_2} \dots x_{i_s}^{m_s} \in \mathcal{M}_N$ is any word (here $m_1, \dots, m_s > 0$, as we work in the monoid), then the image of \mathbf{w} contains $\mathbf{w}(P, \dots, P) = P^{\circ(m_1 + \dots + m_s)}$ for all $P \in \mathbf{k}[x]$, hence it is dense.
- Let $|\cdot|_1, \ldots, |\cdot|_n$ be pairwise non-equivalent non-trivial absolute values on \mathbf{k} (so in particular they induce different topologies on \mathbf{k}). The proof of our main result and

the Artin-Whaples approximation theorem [AW45, Theorem 1] imply that, given any polynomials $Q_1, \ldots, Q_n \in \mathbf{k}[x]$, $r \ge 1$ and $\eta > 0$, there exists $P \in \mathbf{k}[x]$ such that

$$\|\mathbf{P}^{\circ \mathbf{r}} - \mathbf{Q}_{\mathbf{i}}\|_{\mathbf{i}} < \eta$$

for all $i \in \{1, ..., n\}$. Here, P is a polynomial of degree at most

$$d = \max\{1, \deg Q_1, \dots, \deg Q_n\} + r$$

(see the key proposition in Section 2.2) and $\|\cdot\|_i$ denotes a norm on $\mathcal{E}_{\leq d^r}$ induced by the absolute value $|\cdot|_i$, as in Definition 1.3.

1.5 Finitary case

Let $\mathbf{k}=\mathbf{F}_q$ be a finite field. Then, the filtration (1) in Definition 1.3 is a filtration by finite sets. Fix $r\geqslant 2$. For each $d\geqslant 1$ let

$$\mathfrak{I}(d,r) = \big\{ P \in \mathcal{E}_{\leqslant d} \colon P = Q^{\circ r} \text{ for some } Q \in \mathbf{k}[x] \big\}.$$

Notice that the "asymptotic density" of r-th iterates is zero:

$$\lim_{d\to+\infty}\frac{|\mathfrak{I}(d,r)|}{|\mathcal{E}_{\leqslant d}|}=0.$$

Indeed, suppose that $P=Q^{\circ r}$. Then deg $P\leqslant d$ if and only if deg $Q\leqslant d^{1/r}$. Hence there is a surjection from $\mathcal{E}_{\leqslant d^{1/r}}$ to $\mathfrak{I}(d,r)$, and we deduce $|\mathfrak{I}(d,r)|\leqslant q^{d^{1/r}+1}$. Therefore,

$$\frac{|\mathfrak{I}(d,r)|}{|\mathcal{E}_{\leqslant d}|} = \frac{|\mathfrak{I}(d,r)|}{q^{d+1}} \leqslant q^{d^{1/r}-d} \to 0 \quad \text{when} \quad d \to +\infty.$$

Nevertheless, the following questions seem interesting to us.

Question 1.5. Fix a finite base field $\mathbf{k} = \mathbf{F}_q$ and an integer $r \geqslant 2$. What can be said about the asymptotic of the integer sequence $|\mathfrak{I}(d,r)|$ as d grows? Does there exist a limit of the rational sequence $q^{-d-1}|\mathfrak{I}(d^r,r)|$ as $d \to +\infty$?

Acknowledgements

We thank Serge Cantat for his helpful comments and suggestions on the draft of this paper.

2 Power maps on $\operatorname{End}(\mathbb{A}^1_{\mathbf{k}})$

2.1 Hasse derivative

We start with recalling some definitions.

Definition 2.1 (*Hasse derivative*, see e.g. [Gol03, §1.3]). Let A be a commutative ring. For each polynomial $P(x) = p_n x^n + p_{n-1} x^{n-1} + \cdots + p_1 x + p_0 \in A[x]$ and non-negative integer $j \le n$, define the j-th Hasse derivative of P by

$$P^{[j]}(x) = \sum_{k=j}^{n} p_k \binom{k}{j} x^{k-j}.$$

Note that the j-th Hasse derivative of P satisfies $P^{(j)} = j!P^{[j]}$, where $P^{(j)}$ denotes the usual j-th derivative. In what follows, we will use the following two properties of Hasse derivatives.

Proposition 2.2. Let A be a commutative ring, and $P, Q \in A[x]$. Then the following holds.

1. Taylor's formula:

$$P(a+b) = \sum_{j\geqslant 0} P^{[j]}(a) b^{j}$$

for any $a, b \in A$.

2. Leibniz rule:

$$(PQ)^{[j]} = \sum_{\ell=0}^{j} P^{[\ell]} Q^{[j-\ell]}.$$

Remark 2.3. For any $a \in \mathbf{k}$ and $T(x) = \sum_{i=0}^{m} t_i x^i \in \mathbf{k}[x]$, we have

$$\mathsf{T}(\mathfrak{a} x)^{[j]} = \sum_{i=j}^m \mathsf{t}_i \mathfrak{a}^i \binom{\mathfrak{i}}{\mathfrak{j}} x^{\mathfrak{i}-\mathfrak{j}} = \mathfrak{a}^{\mathfrak{j}} \mathsf{T}^{[\mathfrak{j}]}(\mathfrak{a} x).$$

In the sequel we will apply Definition 2.1 with the ring $A = K[\epsilon, \epsilon^{-1}]$ of Laurent polynomials in ϵ .

Definition 2.4. Let $A = K[\varepsilon, \varepsilon^{-1}]$ and let $P, Q \in A[x]$ be any two polynomials. Fix an integer $\ell \in \mathbb{Z}$. We say that P and Q are equivalent modulo ε^{ℓ} , and write $P \equiv Q \mod \varepsilon^{\ell}$, if

$$P - Q \in \varepsilon^{\ell} \mathbf{k}[\varepsilon][x].$$

Remark 2.5. This is indeed an equivalence relation on the ring A[x]. When $(\mathbf{k}, |\cdot|)$ is a valued field with a non-trivial absolute value, one has $P \equiv Q \mod \varepsilon^{\ell}$ if and only if $P - Q = O(\varepsilon^{\ell})$ when $\varepsilon \to 0$. If no confusion arises, we will use both notations below.

2.2 The key proposition

The proof of our main result relies on the following.

Key proposition. Let $r \ge 2$ be an integer and k be a field with at least r elements. Let $n \ge 2$ be an integer and $Q \in k[x]$ be a polynomial of degree at most n-1. Then there exists a family $\varepsilon \mapsto P_{\varepsilon}$ of polynomials of degree at most n+r-1 parametrized by $\mathbb{A}^1_k \setminus \{0\}$, such that the family $\varepsilon \mapsto (P_{\varepsilon})^{\circ r}$ extends to a family parametrized by \mathbb{A}^1_k and whose value at $\varepsilon = 0$ is Q.

The rest of this section is devoted to the proof of this statement. Let a_1, \ldots, a_{r-1} be distinct elements of \mathbf{k}^{\times} . Put $a_r = 0$.

Lemma 2.6. There exists a unique polynomial $L \in \mathbf{k}[x]$ of degree $\deg L \leqslant n+r-2$ such that

$$L(0) = \alpha_1$$
, $L(\alpha_k) = \alpha_{k+1}$ for all $k \in \{1, ..., r-1\}$, and $L^{[j]}(0) = 0$ for all $j \in \{1, ..., n-1\}$.

Proof. Indeed, let $L(x) = \ell_{n+r-2}x^{n+r-2} + \cdots + \ell_1x + \ell_0 \in \mathbf{k}[x]$. The condition $L^{[j]}(0) = 0$ for all $1 \le j \le n-1$ implies that $\ell_1 = \ell_2 = \cdots = \ell_{n-1} = 0$, hence L is of the form

$$L(x) = \ell_{n+r-2}x^{n+r-2} + \dots + \ell_nx^n + \alpha_1.$$

The conditions $L(\alpha_k) = \alpha_{k+1}$ for all $1 \le k \le r-1$ then give a system of r-1 linear equations in r-1 variables $\ell_{n+r-2}, \ldots, \ell_n$. The matrix of this system is the Vandermonde matrix $V(\alpha_1, \ldots, \alpha_{r-1})$. Since α_i 's are assumed pairwise distinct, the Vandermonde determinant is not zero; this achieves the proof.

Remark 2.7. Another way to prove Lemma 2.6 is to use the Lagrange interpolation formula:

$$L(x) = \alpha_1 + \sum_{k=1}^{r-1} (\alpha_{k+1} - \alpha_1) \frac{x^n}{\alpha_k^n} \prod_{l \neq k} \frac{x - \alpha_l}{\alpha_k - \alpha_l}.$$

This polynomial L coincides with the one obtained in Lemma 2.6.

Now, define the polynomial

$$R(x) = \prod_{k=1}^{r-1} (\alpha_k - x) \in \mathbf{k}[x]$$
 (2)

and set

$$c = R(0)^{n+1} \prod_{l=1}^{r-1} R'(a_l).$$
 (3)

Define the polynomial

$$P(x) = \varepsilon^{(r-1)(2n-3)} R(\varepsilon^{2r} x) (\varepsilon^r x^n + c^{-1} Q) + \varepsilon^{-2r} L(\varepsilon^{2r} x) \in \mathbf{k}[\varepsilon, \varepsilon^{-1}][x]. \tag{4}$$

The key proposition is a direct consequence of the following statement.

Proposition 2.8. One has $P^{\circ r} \equiv Q \mod \varepsilon$.

To prove it, we will need several lemmas.

Lemma 2.9. *For every* $k \in \{1, ..., r-1\}$ *, one has*

$$P'(\epsilon^{-2r}\alpha_k) \equiv \epsilon^{3-2n}R'(\alpha_k)\alpha_k^n \mod \epsilon^{4-2n}.$$

Proof. First, we differentiate P and obtain

$$P'(x) = \epsilon^{(r-1)(2n-3)} \Big[R'(\epsilon^{2r}x) \epsilon^{2r} (\epsilon^r x^n + c^{-1}Q) + R(\epsilon^{2r}x) (n\epsilon^r x^{n-1} + c^{-1}Q') \Big] + L'(\epsilon^{2r}x).$$

Notice that $R(a_k) = 0$ and $L'(a_k) \equiv 0 \mod \epsilon^{4-2n}$ since $4-2n \leqslant 0$ and $L'(a_k) \in \mathbf{k}$. Hence

$$P'(\varepsilon^{-2r}a_k) \equiv \varepsilon^{3-2n}R'(a_k)a_k^n + \varepsilon^{(r-1)(2n-3)+2r}R'(a_k)c^{-1}Q(\varepsilon^{-2r}a_k) \mod \varepsilon^{4-2n},$$

and it suffices to show that

$$\epsilon^{(r-1)(2n-3)+2r}Q(\epsilon^{-2r}\alpha_k)\equiv 0 \mod \epsilon^{4-2n}.$$

This is equivalent to saying that $\epsilon^{(r-1)(2n-3)+2r-4+2n}Q(\epsilon^{-2r}\alpha_k)\in \mathbf{k}[\epsilon]$. But, writing $Q=q_{n-1}x^{n-1}+\cdots+q_0$, this Laurent polynomial equals

$$\epsilon^{2nr-r-1} \sum_{i=1}^{n} q_{n-i} (\epsilon^{-2r} a_k)^{n-i} = \sum_{i=1}^{n} q_{n-i} a_k^{n-i} \epsilon^{2ri-r-1}$$

and we observe that $2ri-r-1\geqslant 0$ for all $i\geqslant 1$, which finishes the proof. $\hfill\Box$

Lemma 2.10. *For all* $j \ge 1$, *one has*

$$P^{[j]}(\varepsilon^{-2r}a_k) = O\left(\varepsilon^{2r(j-1)-2n+3}\right). \tag{5}$$

Proof. By Remark 2.3, we have

$$\left(\epsilon^{-2r}L(\epsilon^{2r}x)\right)^{[j]} = \epsilon^{2r(j-1)}L^{[j]}(\epsilon^{2r}x), \ \ \text{hence} \ \ \left(\epsilon^{-2r}L(\epsilon^{2r}x)\right)^{[j]}(\epsilon^{-2r}\alpha_k) = O\left(\epsilon^{2r(j-1)}\right).$$

Next, we will show that if $u\geqslant 0$ and deg $S\leqslant \nu$, then for any $\alpha\in \mathbf{k}$ one has

$$(\mathsf{T}(\varepsilon^{\mathsf{u}}\mathsf{x})\mathsf{S})^{[j]}\left(\varepsilon^{-\mathsf{u}}\mathsf{a}\right) = \mathsf{O}\left(\varepsilon^{(j-\nu)\mathsf{u}}\right). \tag{6}$$

By Leibniz rule, we get

$$\left(\mathsf{T}(\epsilon^{\mathfrak{u}}x)\mathsf{S}\right)^{[j]} = \sum_{\ell=0}^{j} \left(\mathsf{T}(\epsilon^{\mathfrak{u}}x)\right)^{[\ell]} \mathsf{S}^{[j-\ell]} = \sum_{\ell=0}^{j} \epsilon^{\mathfrak{u}\ell} \mathsf{T}^{[\ell]}(\epsilon^{\mathfrak{u}}x) \mathsf{S}^{[j-\ell]}.$$

Now, as deg $S^{[j-\ell]} \leqslant deg \, S - (j-\ell) \leqslant \nu - j + \ell$ and $u \geqslant 0$, we have

$$\left. \epsilon^{\mathfrak{u}\ell} \mathsf{T}^{[\ell]}(\epsilon^{\mathfrak{u}} x) \mathsf{S}^{[j-\ell]} \right|_{\mathbf{x} = \epsilon^{-\mathfrak{u}} \mathbf{0}} = \epsilon^{\mathfrak{u}\ell} \mathsf{O}\left(\epsilon^{-\mathfrak{u}(\nu - j + \ell)}\right) = \mathsf{O}\left(\epsilon^{(j-\nu)\mathfrak{u}}\right),$$

as claimed.

We now apply (6) to the first summand of (4). Namely, taking $\mathfrak{u}=2r$, T=R and $S=x^n$ we get

$$\left(R(\varepsilon^{2r} x) \varepsilon^r x^n \right)^{[j]} \Big|_{x = \varepsilon^{-2r} a_k} = O\left(\varepsilon^{2r(j-n)+r} \right),$$

while taking $\mathfrak{u}=2r$, T=R and $S=c^{-1}Q$, a polynomial of degree $\leqslant \mathfrak{n}-1$, we get

$$\left(R(\varepsilon^{2r} x) c^{-1} Q \right)^{|j|} \Big|_{x = \varepsilon^{-2r} a_k} = O\left(\varepsilon^{2r(j-n)+2r} \right).$$

Further multiplication by $\epsilon^{(r-1)(2n-3)}$ gives $O\left(\epsilon^{2r(j-1)-2n+3}\right)$ and $O\left(\epsilon^{2r(j-1)+r-2n+3}\right)$, respectively. Since $2r(j-1)-2n+3 < \min\{2r(j-1)+r-2n+3,2r(j-1)\}$, we are done. \square

Lemma 2.11. One has

$$P \equiv \epsilon^{-2r} a_1 + \epsilon^{(r-1)(2n-3)} Q c^{-1} R(0) \mod \epsilon^{(r-1)(2n-3)+1}.$$

Proof. We look at each of the two summands in (4). First, we notice that

$$\epsilon^{-2r}L(\epsilon^{2r}x) \equiv \epsilon^{-2r}\alpha_1 \mod \epsilon^{(r-1)(2n-3)+1}.$$

Indeed, we can write $L(x) = \sum_{i=0}^{r-2} \ell_{n+i} x^{n+i} + \alpha_1$, as in the proof of Lemma 2.6. Therefore,

we just need to verify that

$$\sum_{i=0}^{r-2} \ell_{n+i} x^{n+i} \epsilon^{2r(n+i)-2r-(r-1)(2n-3)-1}$$

is a polynomial in $\mathbf{k}[x, \varepsilon]$, i.e. has non-negative powers in ε . But for all $i \in \{0, ..., r-2\}$ we have

$$2r(n+i)-2r-(r-1)(2n-3)-1=2ri+r+(2n-4) \ge r \ge 0$$
,

since $2n-4 \ge 0$ and $i \ge 0$.

Second, we claim that

$$\epsilon^{(r-1)(2n-3)}Qc^{-1}R(0) \equiv \epsilon^{(r-1)(2n-3)}R(\epsilon^{2r}x)(\epsilon^{r}x^{n} + Qc^{-1}) \mod \epsilon^{(r-1)(2n-3)+1}.$$

This is equivalent to showing

$$Qc^{-1}R(0) \equiv R(\varepsilon^{2r}x)(\varepsilon^rx^n + Qc^{-1}) \mod \varepsilon$$

which is obvious, as the constant term of $Qc^{-1}R(0) - R(\epsilon^{2r}x)Qc^{-1}$, viewed as polynomial in ϵ , equals zero.

Lemma 2.12. For all $k \in \{1, ..., r\}$, one has

$$P^{\circ k} \equiv \epsilon^{-2r} a_k + \epsilon^{(r-k)(2n-3)} Q c^{-1} R(0) \prod_{l=1}^{k-1} R'(a_l) a_l^n \mod \epsilon^{(r-k)(2n-3)+1}. \tag{7}$$

Proof. We proceed by induction on k. The base k = 1 is ensured by Lemma 2.11. So, we assume that the statement holds for k and will show it for k + 1. By the induction hypothesis, we can write

$$P^{\circ k}(x) = \varepsilon^{-2r} a_k + \varepsilon^{(r-k)(2n-3)} \left[Q(x) c^{-1} R(0) \prod_{l=1}^{k-1} R'(a_l) a_l^n + \varepsilon T(\varepsilon, x) \right]$$

with $T(\epsilon,x) \in \mathbf{k}[\epsilon,x]$. Let $S(\epsilon,x) = Q(x)c^{-1}R(0)\prod_{l=1}^{k-1}R'(\mathfrak{a}_l)\mathfrak{a}_l^n + \epsilon T(\epsilon,x)$, then

$$P^{\circ k}(x) = \varepsilon^{-2r} \alpha_k + \varepsilon^{(r-k)(2n-3)} S(\varepsilon, x), \tag{8}$$

where

$$S \equiv Q(x)c^{-1}R(0)\prod_{l=1}^{k-1}R'(\alpha_l)\alpha_l^n \mod \epsilon.$$

By Taylor's formula from Proposition 2.2 applied to (8), we get

$$P^{\circ(k+1)}(x) = P(\varepsilon^{-2r}\alpha_k + \varepsilon^{(r-k)(2n-3)}S) = \sum_{j\geqslant 0} P^{[j]}(\varepsilon^{-2r}\alpha_k)\varepsilon^{j(r-k)(2n-3)}S^j. \tag{9}$$

By Lemma 2.10, we have $P^{[j]}(\epsilon^{-2r}a_k) = O(\epsilon^{2r(j-1)-2n+3})$, while $S^j \equiv U(x) \mod \epsilon$ for some $U(x) \in \mathbf{k}[x]$. Therefore,

$$P^{[j]}(\epsilon^{-2r}\alpha_k)\epsilon^{j(r-k)(2n-3)}S^j = O\left(\epsilon^{2r(j-1)-2n+3+j(r-k)(2n-3)}\right).$$

Consider the function

h:
$$\mathbb{N} \to \mathbb{Z}$$
, $j \mapsto 2r(j-1) - 2n + 3 + j(r-k)(2n-3)$.

Note that h is a strictly increasing affine function, since 2r + (r-k)(2n-3) > 0. Thus $h(1) + 1 \le h(j)$ for all $j \ge 2$, which gives

$$(r-k)(2n-3)-2n+4=(r-(k+1))(2n-3)+1 \le h(j).$$

We conclude that

$$\sum_{j\geqslant 2} P^{[j]}(\epsilon^{-2r}\alpha_k)\epsilon^{j(r-k)(2n-3)}S^j = O\left(\epsilon^{(r-(k+1))(2n-3)+1}\right)\text{,}$$

and thus formula (9) implies

$$P^{\circ(k+1)}(x) \equiv P(\epsilon^{-2r}a_k) + P^{[1]}(\epsilon^{-2r}a_k)\epsilon^{(r-k)(2n-3)}S \mod \epsilon^{(r-(k+1))(2n-3)+1}. \tag{10}$$

To achieve the proof, it remains to show that the right hand side of (10) is equivalent, modulo $\epsilon^{(r-(k+1))(2n-3)+1}$, to

$$\epsilon^{-2r} \alpha_{k+1} + \epsilon^{(r-(k+1))(2n-3)} Q c^{-1} R(0) \prod_{l=1}^{k} R'(\alpha_l) \alpha_l^n.$$

But $P(\varepsilon^{-2r}a_k) = \varepsilon^{-2r}a_{k+1}$ by Lemma 2.6. On the other hand,

$$P^{[1]}(\epsilon^{-2r}\alpha_k)\epsilon^{(r-k)(2n-3)}S \equiv \epsilon^{(r-(k+1))(2n-3)}Qc^{-1}R(0)\prod_{l=1}^k R'(\alpha_l)\alpha_l^n \mod \epsilon^{(r-(k+1))(2n-3)+1}.$$

Indeed, this is equivalent to

$$P^{[1]}(\varepsilon^{-2r}\alpha_k)S \equiv \varepsilon^{3-2n}Qc^{-1}R(0)\prod_{l=1}^k R'(\alpha_l)\alpha_l^n \mod \varepsilon^{4-2n},$$

which immediately follows from Lemma 2.9 and the definition of S.

We are now in position to prove Proposition 2.8.

Proof of Proposition 2.8. Put k = r in the formula (7). Recall that $a_r = 0$, hence

$$P^{\circ r} \equiv Qc^{-1}R(0)\prod_{l=1}^{r-1}R'(\mathfrak{a}_l)\mathfrak{a}_l^n \mod \epsilon.$$

It remains to notice that, by the definitions (2) and (3) of R and c, one has

$$c^{-1}R(0)\prod_{l=1}^{r-1}R'(\alpha_l)\alpha_l^n = \frac{1}{R(0)^n}\prod_{l=1}^{r-1}\alpha_l^n = 1.$$

2.3 Proof of the main result

Let $\mathbf{w} \colon \operatorname{End}(\mathbb{A}^1_{\mathbf{k}}) \to \operatorname{End}(\mathbb{A}^1_{\mathbf{k}})$ be the r-th iterate map defined by the word $w = x^r$, and let $\mathcal{W} = \mathbf{w}(\operatorname{End}(\mathbb{A}^1_{\mathbf{k}}))$ be its image. We will show that \mathcal{W} is dense in $\operatorname{End}(\mathbb{A}^1_{\mathbf{k}})$ in the Zariski and Euclidean ind-topologies. So, let $Q \in \operatorname{End}(\mathbb{A}^1_{\mathbf{k}})$ be any polynomial and $\mathcal{U} \ni Q$ be any of its open neighbourhoods. We then need to show that $\mathcal{U} \cap \mathcal{W} \neq \emptyset$. Put $d = \max\{1, \deg Q\} + r$. Then it is sufficient to show that $\mathcal{U} \cap \mathcal{E}_{\leqslant d^r}$ contains an element of \mathcal{W} . In what follows, $\mathcal{E}_{\leqslant d^r}$ is identified with the vector space \mathbf{k}^N , where $N = d^r + 1$. By Proposition 2.8, there exists $P_{\varepsilon} \in \mathbf{k}[\varepsilon, \varepsilon^{-1}][x]$ such that $Q = P_{\varepsilon}^{\circ r} + \varepsilon T(\varepsilon, x)$, where $T(\varepsilon, x) \in \mathbf{k}[\varepsilon, x]$.

Suppose that $(\mathbf{k},|\cdot|)$ is a valued field with a non-trivial absolute value. Let us first notice that \mathbf{k} contains elements which are arbitrarily close to zero. More precisely, $|\mathbf{k}^{\times}| = \{|\epsilon| \colon \epsilon \in \mathbf{k}^{\times}\}$ is a subgroup of $\mathbb{R}_{>0}$, which is either dense (if 1 is its accumulation point), or is of the form $\{t^{\mathbb{Z}}\}$ for some $t \in (0,1)$. Now, the set $\mathcal{U} \cap \mathcal{E}_{\leqslant d^r}$ is open in $\mathcal{E}_{\leqslant d^r}$, hence there are $\delta \in \mathbb{R}_{>0}$ and an open δ -ball $B_{\delta}(Q) \subset \mathcal{U} \cap \mathcal{E}_{\leqslant d^r}$ centred at Q. Then, by choosing $\epsilon \in \mathbf{k}^{\times}$ with $|\epsilon| \cdot ||T|| < \delta$, we obtain $||Q - P_{\epsilon}^{\circ r}|| = |\epsilon| \cdot ||T|| < \delta$, hence $P_{\epsilon}^{\circ r} \in B_{\delta}(Q) \subset \mathcal{U} \cap \mathcal{E}_{\leqslant d^r} \cap \mathcal{W}$, as required.

In the case of an arbitrary infinite base field \mathbf{k} , we proceed as follows. Writing $\mathcal{E}_{\leqslant d^r} \setminus (\mathcal{U} \cap \mathcal{E}_{\leqslant d^r})$ as the zero set of the ideal (F_1, \ldots, F_m) , we notice that $F_i(Q) \neq 0$ for some $i \in \{1, \ldots, m\}$; here we identify Q with a point in \mathbf{k}^N . Consider $G(\epsilon) = F_i(P_{\epsilon}^{\circ r}) = F_i(Q - \epsilon T)$ as a polynomial of ϵ . Note that G is not a zero polynomial, as $G(0) = F_i(Q) \neq 0$. Since

 \mathbf{k} is infinite, there exists $\epsilon \in \mathbf{k}^{\times}$ such that $G(\epsilon) = F_{\mathfrak{i}}(P_{\epsilon}^{\circ r}) \neq 0$, thus $P_{\epsilon}^{\circ r} \in \mathcal{U} \cap \mathcal{E}_{\leqslant d^{r}}$. This achieves the proof.

References

- [AW45] Artin, E.; Whaples, G.: Axiomatic characterization of fields by the product formula for valuations. In: *Bull. Am. Math. Soc.* 51 (1945), S. 469–492. http://dx.doi.org/10.1090/S0002-9904-1945-08383-9. DOI 10.1090/S0002-9904-1945-08383-9. ISSN 0002-9904-5
- [BGK14] Bandman, Tatiana; Garion, Shelly; Kunyavskiĭ, Boris: Equations in simple matrix groups: algebra, geometry, arithmetic, dynamics. In: *Cent. Eur. J. Math.* 12 (2014), Nr. 2, S. 175–211. http://dx.doi.org/10.2478/s11533-013-0335-4. DOI 10.2478/s11533-013-0335-4. ISSN 1895–1074 2, 3
- [Bor83] Borel, Armand: On free subgroups of semi-simple groups. In: *Enseign. Math.* (2) 29 (1983), S. 151–164. ISSN 0013–8584 2
- [GKP18] Gordeev, N. L.; Kunyavskiĭ, B.; Plotkin, E. B.: Geometry of word equations in simple algebraic groups over special fields. In: *Uspekhi Mat. Nauk* 73 (2018), Nr. 5(443), 3–52. http://dx.doi.org/10.4213/rm9838. DOI 10.4213/rm9838. ISSN 0042–1316,2305–2872 2, 3
- [Gol03] Goldschmidt, David M.: *Grad. Texts Math.*. Bd. 215: *Algebraic functions and projective curves*. New York, NY: Springer, 2003. http://dx.doi.org/10.1007/b97844. http://dx.doi.org/10.1007/b97844. ISBN 0-387-95432-5 6
- [HM78] HOFMANN, Karl H.; MUKHERJEA, Arunava: On the density of the image of the exponential function. In: *Math. Ann.* 234 (1978), 263–273. http://dx.doi.org/10.1007/BF01420648. DOI 10.1007/BF01420648. ISSN 0025–5831 2
- [Ser10] Serre, Jean-Pierre: The Cremona group and its finite subgroups. In: *Séminaire Bourbaki. Volume 2008/2009. Exposés 997–1011*. Paris: Société Mathématique de France (SMF), 2010. ISBN 978–2–85629–291–4, S. 75–100, ex 3
- [Sha66] Shafarevich, I. R.: *On some infinite dimensional groups*. Simpos. Int. Geom. Algebr., Roma 1965, 208-212 (1967); Rend. Mat. Appl., V. Ser. 25, 208-212 (1966)., 1966 3
- [Sha13] Shalev, Aner: Some results and problems in the theory of word maps. Version: 2013. http://dx.doi.org/10.1007/978-3-642-39286-3_22. In: *Erdös*

centennial. On the occasion of Paul Erdös 100th anniversary of his birth. Berlin: Springer; Budapest: János Bolyai Mathematical Society, 2013. – DOI 10.1007/978–3–642–39286–3_22. – ISBN 978–3-642–39285–6; 978–3-642–39286–3, S. 611–649 2

IMB, Université de Bordeaux, 351 Cours de la Libération, 33405 Talence Cedex, France pascal.autissier@math.u-bordeaux.fr
jean-philippe.furter@math.u-bordeaux.fr
egor.yasinsky@u-bordeaux.fr