Iterated polynomials are dense
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Abstract

For any infinite field k and any positive integer r, we show constructively that the
map sending each polynomial P € klx] to its r-th iterate P°" is dominant in various
inductive limit topologies on the space of all polynomials.
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1 Equations in groups

1.1 The word map

In what follows, by a word we mean an element w = w(xy, ..., xN) of the free group Iy
on N generators x7, ..., xn, for some N > 1. Let G be a group. The word map on G defined

by w is the map

w: GN = G, (g1,--.,9N) — W(g1,--.,gN)-



Assuming that w # id, what can be said about the image of w? Or, in other words, what
can be said about the solutions (g, ...,gn) € GN of the equation

w(g1,...,gN) =g (*)

when one varies g € G? This problem has a long and remarkable history, and we refer to
[Shal3, BGK14, GKP18] for some excellent surveys. Clearly, one cannot expect the map w
to be surjective already for power words x", r > 2. For example, taking G = SL,(k), where
k = R or k = C, we easily find matrices which do not admit square roots in G, and thus

w = x? induces a non-surjective word map.

1.2 Borel’s dominance theorem and weakly exponential Lie groups

Still, one can ask: how “large” is the image w(G") of a word map? For instance, if
the group G is endowed with a reasonable topology, is the image of w dense in G? Here
are two prototypical results in this direction which inspire our main theorem, presented
in Section 1.4 below.

A morphism f: X — Y of topological spaces is called dominant if its image f(X) is
dense in Y. When X and Y are algebraic varieties, equipped with the Zariski topology,
Chevalley’s theorem implies that a morphism f: X — Y is dominant if and only if f(X)
contains a non-empty Zariski open subset. The following remarkable theorem is due to
A. Borel.

Theorem 1.1 ([Bor83]). If k is a field, G is a connected semisimple linear algebraic k-group, and
W # id, then the corresponding word map w: GN — G is dominant.

The second result concerns complex Lie groups and power maps w: g — g' defined
on them. Standard tools from Lie theory, such as the exponential map exp: g —+ G, provide
an easy way to extracting r-th roots. Specifically, given an element g € G, assume there
exists v € g such that g = exp(v). Then exp(v/r) is an r-th root of g. Unfortunately, the
exponential map of a Lie group is not necessarily surjective — this issue has been the
subject of extensive study (see the references in the surveys mentioned above). However,
for complex Lie groups the following can be said’.

Theorem 1.2 ([HM78, Theorem 2.11]). Every complex connected Lie group G is weakly expo-
nential, i.e. the image of the exponential map exp: g — G is dense.

Hence, for w = x" and “typical” g, the equation (x) admits a solution.

!In the semisimple case, this theorem is also due to A. Borel.



1.3 Endomorphisms of the affine space and some ind-topologies

This note was motivated by a question posed in the surveys [GKP18, BGK14], which
deal with word equations in simple matrix groups. Let k be any field. Noting J.-P. Serre’s
observation [Ser10] that the group Bir(IPi) of birational transformations of the projective
plane resembles simple linear algebraic groups, the authors of these surveys asked whether
word maps are dominant for the Cremona group G = Bir(IP§ ) and any known “interesting”
topology on it, see [BGK14, Problem 7.11] and [GKP18, Question 3.11].

We consider the closely related automorphism group of the affine space Aut(Ay)
and, more generally, the monoid End(Ay}) of algebraic endomorphisms. Recall that an
endomorphism of Ay is given by

fix=(x1,...,xn) — (f1(x),...,fr(x)),

where fy,...,fn € k[xq,...,Xxn] are polynomials. To simplify the notation, we often write
(fy,..., fn) inwhat follows. The degree deg f of an endomorphism f = (fy,..., fy)is defined
as deg(f) = max{deg(fy),...,deg(fn)}. The subset of invertible elements of the monoid
& = End(A}) is the group Aut(Ay) of automorphisms of Ay.

For each d > 0, we identify the set

E<a= {f € End(Ay): degf < d}

d+n
n

[Sha66], we view End(Ay) as an ind-monoid.

with the vector space k™, where N = (“™)n, in an obvious way. Following L. R. Safarevich

Definition 1.3. Consider the filtration
(o]
£ CE0C...CEaClcan C..., E={]J ¢ 1)
d=1

1. AsetS C € is called Zariski closed if SN E«q is Zariski closed in €4 forall d > 1. The
corresponding topology on End(Ay) is called the Zariski ind-topology.

2. Let (k,|-|) be a valued field with a non-trivial absolute value |- |. The map (x,y) —

Ix —y| is a metric on k which yields a topology on k in the usual way. The sets €4,

d+n

™n, can be endowed

being identified with a k-vector space kN, where N = (
with a uniform norm ||xje; +...xneNn|w = Maxj<i<n |xi| for a given choice of basis
(e1,...,en) = E<q. Furthermore, any two such uniform norms with respect to two
different bases are equivalent, and hence they define the same topology on £<4. If

(k,|-]) is complete, then all norms on €4 are equivalent to the uniform norm and



therefore define the same topology. In any case, by an abuse of terminology, we call
this topology Euclidean. A set S C € is called Euclidean closed if SN €4 is closed in
this topology on €4 forall d > 1. The corresponding topology on End(A}) is called
the Euclidean ind-topology. Note that this topology is still Hausdorff.

1.4 Main result
The main result of this note is the following.

Theorem. Let k be a field, v > 1 be an integer and w = x" be a power word. Consider the
corresponding power map on End(A]) ~ K[x], which sends every polynomial to its v-th iterate:

w: k[x] — k[x], P+— P°".

Then the following holds.

1. If (k,|-|) is a valued field with a non-trivial absolute value, then w is dominant in the
Euclidean ind-topology.

2. The map w is dominant in the Zariski ind-topology for any infinite field k.

Furthermore, the statement stays true when w is replaced with any non-trivial word w € My in
the free monoid My on N generators.

Note that, unlike the case of dominant morphisms between algebraic varieties, the
image of a dominant map in the ind-topology does not, in general, contain a Zariski-open
subset.

Remark 1.4.

* Whenever it is defined, the Euclidean ind-topology on End(A}) is finer than the
Zariski ind-topology and therefore, for k valued, statement (1) is stronger than
statement (2).

¢ The “Furthermore” part of the theorem follows from its main part. Indeed, if w =
x;” ng .. .xgs € My is any word (here my, ..., ms > 0, as we work in the monoid),
then the image of w contains w(P,...,P) = polmit-+ms) for all P € k[x], hence it is
dense.

o Let|-|;,...,||n be pairwise non-equivalent non-trivial absolute values on k (so in
particular they induce different topologies on k). The proof of our main result and



the Artin-Whaples approximation theorem [AW45, Theorem 1] imply that, given any
polynomials Q1,...,Qn € k[x], r > T and n > 0, there exists P € k[x] such that

IPT" = Qill; <,
foralli e {l1,...,n}. Here, P is a polynomial of degree at most
d =max{1l,degQq,...,deg Qn}+71

(see the key proposition in Section 2.2) and || - ||; denotes a norm on €4r induced by
the absolute value | - |;, as in Definition 1.3.

1.5 Finitary case

Let k = Fq be a finite field. Then, the filtration (1) in Definition 1.3 is a filtration by
finite sets. Fixr > 2. Foreach d > 1 let

J(d,r) = {P € €<q: P = Q" forsome Q € k[x]}.

Notice that the “asymptotic density” of r-th iterates is zero:

y 13(d, )|
im

=0.
d—+o0 |8<d|

Indeed, suppose that P = Q°". Then degP < d if and only if deg Q < d'/". Hence there is
a surjection from 8<d1/r to J(d, r), and we deduce | J(d, )| < qd]/r“. Therefore,

(4] 1A _ g

qdri < ¢ 50 when d— +co.

|€<al
Nevertheless, the following questions seem interesting to us.

Question 1.5. Fix a finite base field k = F4 and an integer r > 2. What can be said about
the asymptotic of the integer sequence |J(d, r)| as d grows? Does there exist a limit of the
rational sequence q’d’] |I(d", r)]as d — +o0?
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2 Power maps on End(A})

2.1 Hasse derivative
We start with recalling some definitions.

Definition 2.1 (Hasse derivative, see e.g. [Gol03, §1.3]). Let A be a commutative ring. For
each polynomial P(x) = pnx™ +pn_1Xx" 1 + - - +p1x+ Py € Alx] and non-negative integer
j < m, define the j-th Hasse derivative of P by

i - K\ ko
PY(x) = Zpk LX<
k=i )

Note that the j-th Hasse derivative of P satisfies pl) = j!Pm, where PU) denotes the
usual j-th derivative. In what follows, we will use the following two properties of Hasse

derivatives.
Proposition 2.2. Let A be a commutative ring, and P, Q € A[x]. Then the following holds.

1. Taylor’s formula:
Pla+b) =) Pi(a)b]

j=0

forany a,b € A.

2. Leibniz rule:

j
(PQ)il = 3 Pl QIt.
(=0
Remark 2.3. Forany a € kand T(x) = 3 [, tix' € k[x], we have

m .
T(ax)m _ Z tiai (Jl) i — aij(ax).
i=j

In the sequel we will apply Definition 2.1 with the ring A = K[e,e~'] of Laurent
polynomials in e.

Definition 2.4. Let A = K[e, e '] and let P, Q € A[x] be any two polynomials. Fix an integer
{ € Z. We say that P and Q are equivalent modulo el and write P = Q mod el if

P—Q € 'kle][x].



Remark 2.5. This is indeed an equivalence relation on the ring Alx]. When (k,|-|) is
a valued field with a non-trivial absolute value, one has P = Q mod &' if and only if
P —Q = O(¢") when & — 0. If no confusion arises, we will use both notations below.

2.2 The key proposition

The proof of our main result relies on the following.

Key proposition. Let v > 2 be an integer and k be a field with at least r elements. Let n > 2
be an integer and Q € k(x| be a polynomial of degree at most n — 1. Then there exists a family
e — Pe of polynomials of degree at most n+1 — 1 parametrized by A] \ {0}, such that the family
e > (Pe)°" extends to a family parametrized by A and whose value at € = 0 is Q.

The rest of this section is devoted to the proof of this statement. Let ay,...,a,_1 be
distinct elements of k™. Put a, = 0.

Lemma 2.6. There exists a unique polynomial L € k[x] of degree deg L < n + v — 2 such that
L(0)=a;, L(ay) = ary forallke{l,...,v—1}, and L50) =0 forallje(1,...,n—1}

Proof. Indeed, let L(x) = U2 X2 4+ x4+ £y € k[x]. The condition LI(0) = 0 for
all 1 <j <n—1Timpliesthatl; =, =--- ={,_71 =0, hence L is of the form

L(x) = bnpraX™ 2 4o+ 00X+ ay.

The conditions L(ay) = ay4+1 forall T < k < r—1then givea system of r — 1 linear equations
in v — 1 variables {+,_,...,{y,. The matrix of this system is the Vandermonde matrix
V(ay,...,ar—_1). Since a;i’s are assumed pairwise distinct, the Vandermonde determinant
is not zero; this achieves the proof. O

Remark 2.7. Another way to prove Lemma 2.6 is to use the Lagrange interpolation formula:
r—1

x" X—qp
L(X):al‘FZ(akH_al)EH :

a —a
k=1 k 1z kT

This polynomial L coincides with the one obtained in Lemma 2.6.

Now, define the polynomial



and set

T—1
¢ =RO™ TR (ay. 3)
=1
Define the polynomial
P(x) = e™VEIR(2 %) (e"x™ + ¢ 7'Q) + e 2L (e2"x) € kle, e ][] (4)

The key proposition is a direct consequence of the following statement.
Proposition 2.8. One has P°" = Q mod e.
To prove it, we will need several lemmas.

Lemma 2.9. Forevery k € {1,...,r—1}, one has
P'leFay) = "R (ay)al mod e+,
Proof. First, we differentiate P and obtain
P/(x) = ¢(r1)(2n=3) [R/(EZTX)€Zr(£an i c_‘Q) +R(e2%) (nex™ ! +C—1Q/) FL(e¥X).
Notice that R(ax) =0 and L'(ax) =0 mod e* 2" since 4 — 2n < 0 and L' (ay) € k. Hence
P/(e P ay) = "R (ay)af 4+ e VIR (0 ) e Q(e ) mod 472,
and it suffices to show that
T N34y (=2 ) = 0 mod 42,

This is equivalent to saying that ¢(™~1(2n=3)+2=4+2nQ(¢=2rq, ) € k[e]. But, writing Q =
qn_1X""! + -+ -+ qo, this Laurent polynomial equals

n n
2nr—r—1 —2r n—i n—i_2ri—r—1
€ D gnoile Ta)" =) gl e
i=1 i=1

and we observe that 2ri —r—1 > 0 for all i > 1, which finishes the proof. O

Lemma 2.10. For all j > 1, one has

Pil(e~2"q) = O <£2r()'—1)—2n+3> . 5)



Proof. By Remark 2.3, we have

<£—ZrL(€2rX)>[j] _ Z6-DL(2'y), hence <€—2rL(EZrX)>[ﬂ (a) =0 <£2r(j—1)> _
Next, we will show that if u > 0 and deg S < v, then for any a € k one has
(T(e*x)S)Y (e™ta)=0 (EU_V)“> ) (6)
By Leibniz rule, we get
j j
(T(e*x)$) = Z (T(e¥x))¥ st = Z W Tl (gux)sh—Y,
=0 =0

Now, as degS["_‘}J <degS—(j—¢) <v—j+Lland u > 0, we have

U1l (gux)shi—Y

ol —u(v—j+€) ) _ (—v)u
=¢e"0 =0
x=¢ Ya ¢ <£ > (8 > !
as claimed.
We now apply (6) to the first summand of (4). Namely, taking u = 2r, T = R and
S =x" we get

<R(£2rx)erx"> 5

-0 <€2r(j—n)+r> )

x=e¢"2Tqy

while taking u = 2r, T = Rand S = ¢'Q, a polynomial of degree < n — 1, we get

<R(£2T>c)c_1 Q) 5

~0 (Ezr(j—n)+zr> _

x=¢"2Tqy

Further multiplication by ¢™1("=3) gives O <£2r(j_”_zn+3 and O szr(j_])“_z“”), re-

spectively. Since 2r(j —1) —2n+3 < min{2r(j — 1) +r—2n+3,2r(j — 1)}, we are done. [

Lemma 2.11. One has
P= 8721“(11 + E(Tfl)(ln—3)Qc—1R(o) mod g(r—1)(2nf3)+1.
Proof. We look at each of the two summands in (4). First, we notice that
€72TL(£2TX) = £72T(11 mod 8(r—1)(2n73)+].

Indeed, we can write L(x) = i:g lh X" 4 @y, as in the proof of Lemma 2.6. Therefore,



we just need to verify that

-2
n+1 2r(n+i)—2r—(r—1)(2n—3)—1
brpix

=0

is a polynomial in k(x, €], i.e. has non-negative powers in €. But for alli € {0,...,r —2} we
have
2r(im+i)—2r—(r—1)2n—=-3)—1=2ri+r+(2n—-4) >r >0,

since2n—4 > 0and i > 0.
Second, we claim that

s(r—])(Zn—S)QC—1R(O) = 8(r—1)(2n—3)R(£2rX)(€rxn+ QC_1) mod E(r—])(Zn—S)—H.
This is equivalent to showing
Qc'R(0) = R(e7x)(e"™x™+Qc™") mod ¢,

which is obvious, as the constant term of Qc~'R(0) — R(e?"x)Qc ™!, viewed as polynomial
in ¢, equals zero. O

Lemma 2.12. Forallk € {1,...,r}, one has

K1
Pk = ¢ 2Ty 4 Qe TR(0) H R'(a1)al* mod grK(@n=3)+1 (7)
=1

Proof. We proceed by induction on k. The base k = 1 is ensured by Lemma 2.11. So,
we assume that the statement holds for k and will show it for k + 1. By the induction
hypothesis, we can write

k—1
P(x) = ¢ a4+ eI Q(x)eTR0) [ [ R (a)a + €T (e, x)
1=1

with T(g, x) € k[e, x]. Let S(e,x) = Q(x)c~'R(0) ]fj R'(ap)al* + €T (e, x), then
PR(x) = e 2Tay + R3S (¢ x), (8)

where
k—1

S=Q(x)e 'RO) [ [R(a)al mod e.
=1

10



By Taylor’s formula from Proposition 2.2 applied to (8), we get

Po(k+1)(x) — P(Eizrak + 8( )(2n— 3 Z P 721“ k)[Zn—S)Sj. (9)
j=0

By Lemma 2.10, we have P! (¢ 72" qy) = O(e2"0~1=2"+3) while S = U(x) mod ¢ for some
U(x) € k[x]. Therefore,

PU]( L ak)e]’(r—k)(Zn—3) Si—0 <€2r(j—1)—2n+3+j(r—k)(2n—3)> .

Consider the function
h:N—-Z, j—2rG—1)—2n+3+j(r—k)(2n—3).

Note that h is a strictly increasing affine function, since 2r + (r — k)(2n —3) > 0. Thus
h(1) +1 < h(j) for all j > 2, which gives

(r—k)(2n—-3)—2n+4=(r— (k+1))(2n—3) +1 < h(j).
We conclude that

ZP g —K(2n-3)gj _ <£(r—(k+1])(2n—3]+1> /
j>2

and thus formula (9) implies
Po(k—H)(X) = P(E—Zrak) +P[1](£—2Tak)€(r—k)(2n 3) S mod E k+1)](2n—3)+1. (10)

To achieve the proof, it remains to show that the right hand side of (10) is equivalent,
modulo E[T*(k+1))(2nf3)+l’ to

k
s—ZTak_H + E(T—(k+1))(2n—3)QC—1 R(O) H R'(al)a{‘.
1=1

But P(e 2"ay) = e 2Ty, by Lemma 2.6. On the other hand,

k
P[]] (ngrak)e(rfk)(anSJS = E(Tf(kJrl))(anS)QCfl R(O) H R’(al)a{l mod E(T*(k+1))(2n73)+]
1=1

11



Indeed, this is equivalent to

K
P (e a)S = 372"QcR(0) l_IR’(al)a{1 mod ¢+,
1=1

which immediately follows from Lemma 2.9 and the definition of S. O
We are now in position to prove Proposition 2.8.

Proof of Proposition 2.8. Put k = r in the formula (7). Recall that a, = 0, hence

r—1
P°T = Qc~'R(0) I—IR’(al)a{1 mod .
1=1

It remains to notice that, by the definitions (2) and (3) of R and ¢, one has

r—1 1 r—1

c_1R(O)HR’(a1)a{‘:WHa{‘:1. O
1=1 1=1

2.3 Proof of the main result

Let w: End(AL) — End(Al]() be the r-th iterate map defined by the word w = x,
and let W = w(End(All()) be its image. We will show that W is dense in End(Al]() in
the Zariski and Euclidean ind-topologies. So, let Q € End(A}) be any polynomial and
U > Q be any of its open neighbourhoods. We then need to show that UN'W # @. Put
d = max{1,deg Q} + r. Then it is sufficient to show that U N E<4r contains an element
of W. In what follows, E4r is identified with the vector space kN, where N = d" + 1.
By Proposition 2.8, there exists P, € kle, e 1[x] such that Q = P+ €T(e,x), where
T(e,x) € kle, x].

Suppose that (k, |- |) is a valued field with a non-trivial absolute value. Let us first
notice that k contains elements which are arbitrarily close to zero. More precisely, [k*| =
{lel: € € k*}is a subgroup of R+, which is either dense (if 1 is its accumulation point), or
is of the form {t£} for some t € (0,1). Now, the set UN E<qr is open in Eq4r, hence there
are d € R-p and an open &-ball B5(Q) C UN E«4r centred at Q. Then, by choosing ¢ € k*
with [e] - || T|| < &, we obtain [|[Q — P{™|| =[] - ||T|| < 0, hence P{™ € B5(Q) C UNEcgr N'W,
as required.

In the case of an arbitrary infinite base field k, we proceed as follows. Writing
E<ar \ (UN E«qr) as the zero set of the ideal (Fy, ..., Fin), we notice that F;(Q) # 0 for some
i € {1,..., m}; here we identify Q with a point in kN. Consider G(&) = F;(PS") = Fy(Q —eT)
as a polynomial of e. Note that G is not a zero polynomial, as G(0) = F;(Q) # 0. Since

12



k is infinite, there exists ¢ € k* such that G(¢) = F;(Pg") # 0, thus P{" € UN Ecq4r. This
achieves the proof.
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