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Abstract

For any infinite field k and any positive integer r, we show constructively that the

map sending each polynomial P ∈ k[x] to its r-th iterate P◦r
is dominant in various

inductive limit topologies on the space of all polynomials.
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1 Equations in groups

1.1 The word map

In what follows, by a word we mean an elementw = w(x1, . . . , xN) of the free group FN

on N generators x1, . . . , xN, for some N ⩾ 1. Let G be a group. The word map on G defined

by w is the map

w : GN → G, (g1, . . . ,gN) 7→ w(g1, . . . ,gN).
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Assuming that w ̸= id, what can be said about the image of w? Or, in other words, what

can be said about the solutions (g1, . . . ,gN) ∈ GN
of the equation

w(g1, . . . ,gN) = g (∗)

when one varies g ∈ G? This problem has a long and remarkable history, and we refer to

[Sha13, BGK14, GKP18] for some excellent surveys. Clearly, one cannot expect the map w
to be surjective already for power words xr, r ⩾ 2. For example, taking G = SL2(k), where

k = R or k = C, we easily find matrices which do not admit square roots in G, and thus

w = x2 induces a non-surjective word map.

1.2 Borel’s dominance theorem and weakly exponential Lie groups

Still, one can ask: how “large” is the image w(GN) of a word map? For instance, if

the group G is endowed with a reasonable topology, is the image of w dense in G? Here

are two prototypical results in this direction which inspire our main theorem, presented

in Section 1.4 below.

A morphism f : X → Y of topological spaces is called dominant if its image f(X) is

dense in Y. When X and Y are algebraic varieties, equipped with the Zariski topology,

Chevalley’s theorem implies that a morphism f : X → Y is dominant if and only if f(X)

contains a non-empty Zariski open subset. The following remarkable theorem is due to

A. Borel.

Theorem 1.1 ([Bor83]). If k is a field, G is a connected semisimple linear algebraic k-group, and
w ̸= id, then the corresponding word map w : GN → G is dominant.

The second result concerns complex Lie groups and power maps w : g 7→ gr defined

on them. Standard tools from Lie theory, such as the exponential map exp : g → G, provide

an easy way to extracting r-th roots. Specifically, given an element g ∈ G, assume there

exists v ∈ g such that g = exp(v). Then exp(v/r) is an r-th root of g. Unfortunately, the

exponential map of a Lie group is not necessarily surjective — this issue has been the

subject of extensive study (see the references in the surveys mentioned above). However,

for complex Lie groups the following can be said
1
.

Theorem 1.2 ([HM78, Theorem 2.11]). Every complex connected Lie group G is weakly expo-
nential, i.e. the image of the exponential map exp : g → G is dense.

Hence, for w = xr and “typical” g, the equation (∗) admits a solution.

1
In the semisimple case, this theorem is also due to A. Borel.
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1.3 Endomorphisms of the affine space and some ind-topologies

This note was motivated by a question posed in the surveys [GKP18, BGK14], which

deal with word equations in simple matrix groups. Let k be any field. Noting J.-P. Serre’s

observation [Ser10] that the group Bir(P2
k) of birational transformations of the projective

plane resembles simple linear algebraic groups, the authors of these surveys asked whether

word maps are dominant for the Cremona groupG = Bir(P2
k) and any known “interesting”

topology on it, see [BGK14, Problem 7.11] and [GKP18, Question 3.11].

We consider the closely related automorphism group of the affine space Aut(An
k)

and, more generally, the monoid End(An
k) of algebraic endomorphisms. Recall that an

endomorphism of An
k is given by

f : x = (x1, . . . , xn) 7→ (f1(x), . . . , fn(x)),

where f1, . . . , fn ∈ k[x1, . . . , xn] are polynomials. To simplify the notation, we often write

(f1, . . . , fn) in what follows. The degree deg f of an endomorphism f = (f1, . . . , fn) is defined

as deg(f) = max{deg(f1), . . . , deg(fn)}. The subset of invertible elements of the monoid

E = End(An
k) is the group Aut(An

k) of automorphisms of An
k .

For each d ⩾ 0, we identify the set

E⩽d =
{
f ∈ End(An

k) : deg f ⩽ d
}

with the vector space kN
, where N =

(
d+n
n

)
n, in an obvious way. Following I. R. Šafarevich

[Sha66], we view End(An
k) as an ind-monoid.

Definition 1.3. Consider the filtration

E⩽1 ⊆ E⩽2 ⊆ . . . ⊆ E⩽d ⊆ E⩽d+1 ⊆ . . . , E =

∞⋃
d=1

E⩽d. (1)

1. A set S ⊆ E is called Zariski closed if S∩E⩽d is Zariski closed in E⩽d for all d ⩾ 1. The

corresponding topology on End(An
k) is called the Zariski ind-topology.

2. Let (k, | · |) be a valued field with a non-trivial absolute value | · |. The map (x,y) 7→
|x− y| is a metric on k which yields a topology on k in the usual way. The sets E⩽d,

being identified with a k-vector space kN
, where N =

(
d+n
n

)
n, can be endowed

with a uniform norm ∥x1e1 + . . . xNeN∥∞ = max1⩽i⩽N |xi| for a given choice of basis

⟨e1, . . . , eN⟩ = E⩽d. Furthermore, any two such uniform norms with respect to two

different bases are equivalent, and hence they define the same topology on E⩽d. If

(k, | · |) is complete, then all norms on E⩽d are equivalent to the uniform norm and
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therefore define the same topology. In any case, by an abuse of terminology, we call

this topology Euclidean. A set S ⊆ E is called Euclidean closed if S ∩ E⩽d is closed in

this topology on E⩽d for all d ⩾ 1. The corresponding topology on End(An
k) is called

the Euclidean ind-topology. Note that this topology is still Hausdorff.

1.4 Main result

The main result of this note is the following.

Theorem. Let k be a field, r ⩾ 1 be an integer and w = xr be a power word. Consider the
corresponding power map on End(A1

k) ≃ k[x], which sends every polynomial to its r-th iterate:

w : k[x] → k[x], P 7→ P◦r.

Then the following holds.

1. If (k, | · |) is a valued field with a non-trivial absolute value, then w is dominant in the
Euclidean ind-topology.

2. The map w is dominant in the Zariski ind-topology for any infinite field k.

Furthermore, the statement stays true when w is replaced with any non-trivial word w ∈ MN in
the free monoid MN on N generators.

Note that, unlike the case of dominant morphisms between algebraic varieties, the

image of a dominant map in the ind-topology does not, in general, contain a Zariski-open

subset.

Remark 1.4.

• Whenever it is defined, the Euclidean ind-topology on End(An
k) is finer than the

Zariski ind-topology and therefore, for k valued, statement (1) is stronger than

statement (2).

• The “Furthermore” part of the theorem follows from its main part. Indeed, if w =

x
m1
i1

x
m2
i2

. . . xms
is

∈ MN is any word (here m1, . . . ,ms > 0, as we work in the monoid),

then the image of w contains w(P, . . . ,P) = P◦(m1+···+ms)
for all P ∈ k[x], hence it is

dense.

• Let | · |1, . . . , | · |n be pairwise non-equivalent non-trivial absolute values on k (so in

particular they induce different topologies on k). The proof of our main result and
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the Artin-Whaples approximation theorem [AW45, Theorem 1] imply that, given any

polynomials Q1, . . . ,Qn ∈ k[x], r ⩾ 1 and η > 0, there exists P ∈ k[x] such that

∥P◦r −Qi∥i < η,

for all i ∈ {1, . . . ,n}. Here, P is a polynomial of degree at most

d = max{1, degQ1, . . . , degQn}+ r

(see the key proposition in Section 2.2) and ∥ · ∥i denotes a norm on E⩽dr induced by

the absolute value | · |i, as in Definition 1.3.

1.5 Finitary case

Let k = Fq be a finite field. Then, the filtration (1) in Definition 1.3 is a filtration by

finite sets. Fix r ⩾ 2. For each d ⩾ 1 let

I(d, r) =
{
P ∈ E⩽d : P = Q◦r

for some Q ∈ k[x]
}

.

Notice that the “asymptotic density” of r-th iterates is zero:

lim
d→+∞ | I(d, r)|

|E⩽d|
= 0.

Indeed, suppose that P = Q◦r
. Then degP ⩽ d if and only if degQ ⩽ d1/r

. Hence there is

a surjection from E⩽d1/r to I(d, r), and we deduce | I(d, r)| ⩽ qd1/r+1
. Therefore,

| I(d, r)|
|E⩽d|

=
| I(d, r)|
qd+1

⩽ qd1/r−d → 0 when d → +∞.

Nevertheless, the following questions seem interesting to us.

Question 1.5. Fix a finite base field k = Fq and an integer r ⩾ 2. What can be said about

the asymptotic of the integer sequence | I(d, r)| as d grows? Does there exist a limit of the

rational sequence q−d−1| I(dr, r)| as d → +∞?

Acknowledgements
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2 Power maps on End(A1
k)

2.1 Hasse derivative

We start with recalling some definitions.

Definition 2.1 (Hasse derivative, see e.g. [Gol03, §1.3]). Let A be a commutative ring. For

each polynomial P(x) = pnx
n+pn−1x

n−1+ · · ·+p1x+p0 ∈ A[x] and non-negative integer

j ⩽ n, define the j-th Hasse derivative of P by

P[j](x) =

n∑
k=j

pk

(
k

j

)
xk−j.

Note that the j-th Hasse derivative of P satisfies P(j) = j!P[j]
, where P(j)

denotes the

usual j-th derivative. In what follows, we will use the following two properties of Hasse

derivatives.

Proposition 2.2. Let A be a commutative ring, and P,Q ∈ A[x]. Then the following holds.

1. Taylor’s formula:
P(a+ b) =

∑
j⩾0

P[j](a)bj

for any a,b ∈ A.

2. Leibniz rule:

(PQ)[j] =

j∑
ℓ=0

P[ℓ]Q[j−ℓ].

Remark 2.3. For any a ∈ k and T(x) =
∑m

i=0 tix
i ∈ k[x], we have

T(ax)[j] =

m∑
i=j

tia
i

(
i

j

)
xi−j = ajT [j](ax).

In the sequel we will apply Definition 2.1 with the ring A = K[ε, ε−1] of Laurent

polynomials in ε.

Definition 2.4. LetA = K[ε, ε−1] and let P,Q ∈ A[x] be any two polynomials. Fix an integer

ℓ ∈ Z. We say that P and Q are equivalent modulo εℓ, and write P ≡ Q mod εℓ, if

P−Q ∈ εℓk[ε][x].
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Remark 2.5. This is indeed an equivalence relation on the ring A[x]. When (k, | · |) is

a valued field with a non-trivial absolute value, one has P ≡ Q mod εℓ if and only if

P−Q = O(εℓ) when ε → 0. If no confusion arises, we will use both notations below.

2.2 The key proposition

The proof of our main result relies on the following.

Key proposition. Let r ⩾ 2 be an integer and k be a field with at least r elements. Let n ⩾ 2

be an integer and Q ∈ k[x] be a polynomial of degree at most n− 1. Then there exists a family
ε 7→ Pε of polynomials of degree at most n+ r− 1 parametrized by A1

k \ {0}, such that the family
ε 7→ (Pε)

◦r extends to a family parametrized by A1
k and whose value at ε = 0 is Q.

The rest of this section is devoted to the proof of this statement. Let a1, . . . ,ar−1 be

distinct elements of k×
. Put ar = 0.

Lemma 2.6. There exists a unique polynomial L ∈ k[x] of degree degL ⩽ n+ r− 2 such that

L(0) = a1, L(ak) = ak+1 for all k ∈ {1, . . . , r− 1}, and L[j](0) = 0 for all j ∈ {1, . . . ,n− 1}.

Proof. Indeed, let L(x) = ℓn+r−2x
n+r−2 + · · ·+ ℓ1x+ ℓ0 ∈ k[x]. The condition L[j](0) = 0 for

all 1 ⩽ j ⩽ n− 1 implies that ℓ1 = ℓ2 = · · · = ℓn−1 = 0, hence L is of the form

L(x) = ℓn+r−2x
n+r−2 + · · ·+ ℓnx

n + a1.

The conditionsL(ak) = ak+1 for all 1 ⩽ k ⩽ r−1 then give a system of r−1 linear equations

in r − 1 variables ℓn+r−2, . . . , ℓn. The matrix of this system is the Vandermonde matrix

V(a1, . . . ,ar−1). Since ai’s are assumed pairwise distinct, the Vandermonde determinant

is not zero; this achieves the proof.

Remark 2.7. Another way to prove Lemma 2.6 is to use the Lagrange interpolation formula:

L(x) = a1 +

r−1∑
k=1

(ak+1 − a1)
xn

an
k

∏
l̸=k

x− al

ak − al
.

This polynomial L coincides with the one obtained in Lemma 2.6.

Now, define the polynomial

R(x) =

r−1∏
k=1

(ak − x) ∈ k[x] (2)
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and set

c = R(0)n+1
r−1∏
l=1

R ′(al). (3)

Define the polynomial

P(x) = ε(r−1)(2n−3)R(ε2rx)(εrxn + c−1Q) + ε−2rL(ε2rx) ∈ k[ε, ε−1][x]. (4)

The key proposition is a direct consequence of the following statement.

Proposition 2.8. One has P◦r ≡ Q mod ε.

To prove it, we will need several lemmas.

Lemma 2.9. For every k ∈ {1, . . . , r− 1}, one has

P ′(ε−2rak) ≡ ε3−2nR ′(ak)a
n
k mod ε4−2n.

Proof. First, we differentiate P and obtain

P ′(x) = ε(r−1)(2n−3)
[
R ′(ε2rx)ε2r(εrxn + c−1Q) + R(ε2rx)(nεrxn−1 + c−1Q ′)

]
+ L ′(ε2rx).

Notice that R(ak) = 0 and L ′(ak) ≡ 0 mod ε4−2n
since 4− 2n ⩽ 0 and L ′(ak) ∈ k. Hence

P ′(ε−2rak) ≡ ε3−2nR ′(ak)a
n
k + ε(r−1)(2n−3)+2rR ′(ak)c

−1Q(ε−2rak) mod ε4−2n,

and it suffices to show that

ε(r−1)(2n−3)+2rQ(ε−2rak) ≡ 0 mod ε4−2n.

This is equivalent to saying that ε(r−1)(2n−3)+2r−4+2nQ(ε−2rak) ∈ k[ε]. But, writing Q =

qn−1x
n−1 + · · ·+ q0, this Laurent polynomial equals

ε2nr−r−1
n∑
i=1

qn−i(ε
−2rak)

n−i =

n∑
i=1

qn−ia
n−i
k ε2ri−r−1

and we observe that 2ri− r− 1 ⩾ 0 for all i ⩾ 1, which finishes the proof.

Lemma 2.10. For all j ⩾ 1, one has

P[j](ε−2rak) = O
(
ε2r(j−1)−2n+3

)
. (5)
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Proof. By Remark 2.3, we have

(
ε−2rL(ε2rx)

)[j]
= ε2r(j−1)L[j](ε2rx), hence

(
ε−2rL(ε2rx)

)[j]
(ε−2rak) = O

(
ε2r(j−1)

)
.

Next, we will show that if u ⩾ 0 and degS ⩽ v, then for any a ∈ k one has

(T(εux)S)[j]
(
ε−ua

)
= O

(
ε(j−v)u

)
. (6)

By Leibniz rule, we get

(T(εux)S)[j] =

j∑
ℓ=0

(T(εux))[ℓ] S[j−ℓ] =

j∑
ℓ=0

εuℓT [ℓ](εux)S[j−ℓ].

Now, as degS[j−ℓ] ⩽ degS− (j− ℓ) ⩽ v− j+ ℓ and u ⩾ 0, we have

εuℓT [ℓ](εux)S[j−ℓ]
∣∣∣
x=ε−ua

= εuℓO
(
ε−u(v−j+ℓ)

)
= O

(
ε(j−v)u

)
,

as claimed.

We now apply (6) to the first summand of (4). Namely, taking u = 2r, T = R and

S = xn we get (
R(ε2rx)εrxn

)[j] ∣∣∣
x=ε−2rak

= O
(
ε2r(j−n)+r

)
,

while taking u = 2r, T = R and S = c−1Q, a polynomial of degree ⩽ n− 1, we get

(
R(ε2rx)c−1Q

)[j] ∣∣∣
x=ε−2rak

= O
(
ε2r(j−n)+2r

)
.

Further multiplication by ε(r−1)(2n−3)
gives O

(
ε2r(j−1)−2n+3

)
and O

(
ε2r(j−1)+r−2n+3

)
, re-

spectively. Since 2r(j− 1)− 2n+ 3 < min{2r(j− 1)+ r− 2n+ 3, 2r(j− 1)}, we are done.

Lemma 2.11. One has

P ≡ ε−2ra1 + ε(r−1)(2n−3)Qc−1R(0) mod ε(r−1)(2n−3)+1.

Proof. We look at each of the two summands in (4). First, we notice that

ε−2rL(ε2rx) ≡ ε−2ra1 mod ε(r−1)(2n−3)+1.

Indeed, we can write L(x) =
∑r−2

i=0 ℓn+ix
n+i + a1, as in the proof of Lemma 2.6. Therefore,
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we just need to verify that

r−2∑
i=0

ℓn+ix
n+iε2r(n+i)−2r−(r−1)(2n−3)−1

is a polynomial in k[x, ε], i.e. has non-negative powers in ε. But for all i ∈ {0, . . . , r− 2} we

have

2r(n+ i) − 2r− (r− 1)(2n− 3) − 1 = 2ri+ r+ (2n− 4) ⩾ r ⩾ 0,

since 2n− 4 ⩾ 0 and i ⩾ 0.

Second, we claim that

ε(r−1)(2n−3)Qc−1R(0) ≡ ε(r−1)(2n−3)R(ε2rx)(εrxn +Qc−1) mod ε(r−1)(2n−3)+1.

This is equivalent to showing

Qc−1R(0) ≡ R(ε2rx)(εrxn +Qc−1) mod ε,

which is obvious, as the constant term of Qc−1R(0) − R(ε2rx)Qc−1
, viewed as polynomial

in ε, equals zero.

Lemma 2.12. For all k ∈ {1, . . . , r}, one has

P◦k ≡ ε−2rak + ε(r−k)(2n−3)Qc−1R(0)

k−1∏
l=1

R ′(al)a
n
l mod ε(r−k)(2n−3)+1. (7)

Proof. We proceed by induction on k. The base k = 1 is ensured by Lemma 2.11. So,

we assume that the statement holds for k and will show it for k+ 1. By the induction

hypothesis, we can write

P◦k(x) = ε−2rak + ε(r−k)(2n−3)

[
Q(x)c−1R(0)

k−1∏
l=1

R ′(al)a
n
l + εT(ε, x)

]

with T(ε, x) ∈ k[ε, x]. Let S(ε, x) = Q(x)c−1R(0)
∏k−1

l=1 R ′(al)a
n
l + εT(ε, x), then

P◦k(x) = ε−2rak + ε(r−k)(2n−3)S(ε, x), (8)

where

S ≡ Q(x)c−1R(0)

k−1∏
l=1

R ′(al)a
n
l mod ε.
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By Taylor’s formula from Proposition 2.2 applied to (8), we get

P◦(k+1)(x) = P(ε−2rak + ε(r−k)(2n−3)S) =
∑
j⩾0

P[j](ε−2rak)ε
j(r−k)(2n−3)Sj. (9)

By Lemma 2.10, we have P[j](ε−2rak) = O(ε2r(j−1)−2n+3), while Sj ≡ U(x) mod ε for some

U(x) ∈ k[x]. Therefore,

P[j](ε−2rak)ε
j(r−k)(2n−3)Sj = O

(
ε2r(j−1)−2n+3+j(r−k)(2n−3)

)
.

Consider the function

h : N → Z, j 7→ 2r(j− 1) − 2n+ 3+ j(r− k)(2n− 3).

Note that h is a strictly increasing affine function, since 2r+ (r− k)(2n− 3) > 0. Thus

h(1) + 1 ⩽ h(j) for all j ⩾ 2, which gives

(r− k)(2n− 3) − 2n+ 4 = (r− (k+ 1))(2n− 3) + 1 ⩽ h(j).

We conclude that∑
j⩾2

P[j](ε−2rak)ε
j(r−k)(2n−3)Sj = O

(
ε(r−(k+1))(2n−3)+1

)
,

and thus formula (9) implies

P◦(k+1)(x) ≡ P(ε−2rak) + P[1](ε−2rak)ε
(r−k)(2n−3)S mod ε(r−(k+1))(2n−3)+1. (10)

To achieve the proof, it remains to show that the right hand side of (10) is equivalent,

modulo ε(r−(k+1))(2n−3)+1
, to

ε−2rak+1 + ε(r−(k+1))(2n−3)Qc−1R(0)

k∏
l=1

R ′(al)a
n
l .

But P(ε−2rak) = ε−2rak+1 by Lemma 2.6. On the other hand,

P[1](ε−2rak)ε
(r−k)(2n−3)S ≡ ε(r−(k+1))(2n−3)Qc−1R(0)

k∏
l=1

R ′(al)a
n
l mod ε(r−(k+1))(2n−3)+1.
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Indeed, this is equivalent to

P[1](ε−2rak)S ≡ ε3−2nQc−1R(0)

k∏
l=1

R ′(al)a
n
l mod ε4−2n,

which immediately follows from Lemma 2.9 and the definition of S.

We are now in position to prove Proposition 2.8.

Proof of Proposition 2.8. Put k = r in the formula (7). Recall that ar = 0, hence

P◦r ≡ Qc−1R(0)

r−1∏
l=1

R ′(al)a
n
l mod ε.

It remains to notice that, by the definitions (2) and (3) of R and c, one has

c−1R(0)

r−1∏
l=1

R ′(al)a
n
l =

1

R(0)n

r−1∏
l=1

an
l = 1.

2.3 Proof of the main result

Let w : End(A1
k) → End(A1

k) be the r-th iterate map defined by the word w = xr,

and let W = w(End(A1
k)) be its image. We will show that W is dense in End(A1

k) in

the Zariski and Euclidean ind-topologies. So, let Q ∈ End(A1
k) be any polynomial and

U ∋ Q be any of its open neighbourhoods. We then need to show that U ∩W ̸= ∅. Put

d = max{1, degQ}+ r. Then it is sufficient to show that U ∩ E⩽dr contains an element

of W. In what follows, E⩽dr is identified with the vector space kN
, where N = dr + 1.

By Proposition 2.8, there exists Pε ∈ k[ε, ε−1][x] such that Q = P◦r
ε + εT(ε, x), where

T(ε, x) ∈ k[ε, x].
Suppose that (k, | · |) is a valued field with a non-trivial absolute value. Let us first

notice that k contains elements which are arbitrarily close to zero. More precisely, |k×| =

{|ε| : ε ∈ k×} is a subgroup of R>0, which is either dense (if 1 is its accumulation point), or

is of the form {tZ} for some t ∈ (0, 1). Now, the set U ∩ E⩽dr is open in E⩽dr , hence there

are δ ∈ R>0 and an open δ-ball Bδ(Q) ⊂ U∩ E⩽dr centred at Q. Then, by choosing ε ∈ k×

with |ε| · ∥T∥ < δ, we obtain ∥Q− P◦r
ε ∥ = |ε| · ∥T∥ < δ, hence P◦r

ε ∈ Bδ(Q) ⊂ U∩ E⩽dr ∩W,

as required.

In the case of an arbitrary infinite base field k, we proceed as follows. Writing

E⩽dr \ (U∩E⩽dr) as the zero set of the ideal (F1, . . . , Fm), we notice that Fi(Q) ̸= 0 for some

i ∈ {1, . . . ,m}; here we identifyQwith a point in kN
. ConsiderG(ε) = Fi(P

◦r
ε ) = Fi(Q− εT)

as a polynomial of ε. Note that G is not a zero polynomial, as G(0) = Fi(Q) ̸= 0. Since

12



k is infinite, there exists ε ∈ k×
such that G(ε) = Fi(P

◦r
ε ) ̸= 0, thus P◦r

ε ∈ U ∩ E⩽dr . This

achieves the proof.
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